Three Alternatives to Pigeon Pose & A Brief Discussion About Stretching

(**Update February 2018: I have backed off the position I take in "Reason #2" of this blog post. Although passive, folded-forward pigeon pose doesn't offer much in terms of positive change for our tissues, I don't think it's as innately precarious for our joints as I used to (injuries generally happen from fast, strong, quick forces - not from a simple low-load stretch done for a bit.) So while I don't personally practice passive pigeon very often because I'd just prefer to do things that are more effective and more efficient for making change in my body - like the 3 great alternatives I feature in this post - I DO occasionally include it as an option in my classes again, and I don't fearmonger about the pose anymore today. Just FYI!)

I know I might be in the minority amongst yoga teachers, but even though yoga students tend to looove their pigeon pose, I have consciously chosen to forgo this pose in my classes for the past several years now. While I do teach variations of pigeon pose like reclined pigeon and standing pigeon chair, I don't generally teach the traditional version of this pose in which you lie in a passive, unsupported forward fold over the front leg.

 

WHY I SKIP PIGEON POSE - REASON #1

I have two main reasons for skipping pigeon pose in my classes. The first is that it doesn't offer much in the way of positive change for the tissues of the body. We generally tend to think of pigeon pose as a stretch designed to increase the flexibility of the hips. But we've actually learned quite a bit more from scientific research in recent years about how stretching works (although there is still a ton that we don't know!), and thanks to my brilliant mentor Jules Mitchell, much of this new information is making its way to the yoga community.

One of the biggest realizations that I've learned about stretching is that flexibility is a much more complex topic than we've generally learned from our yoga teacher trainings, workshops, books, and other studies. The prevailing approach to flexibility in most yoga classes (and in much of the health/fitness world in general) is that if someone lacks range of motion in a joint, the solution is to stretch the muscles and fascia that cross the joint to lengthen them out. Then we get longer tissues and voila! - we can stretch further in that direction. By this reasoning, the solution to the ubiquitous "tight hips" that many people claim to have is to simply stretch one's hips out in pigeon pose for a long time at the end of every yoga class - a practice that we yogis are quite familiar with!

But the assumption that in order to solve all inflexibility issues, tissues simply need to be stretched out does not take into account the many other likely factors that could be causing the inflexibility - factors that passive stretching does not actually address. It reminds me of pain science and how easy it is to attribute pain simply to structural factors like tissue damage, poor alignment, or dysfunctional movement patterns, when the bigger picture of pain is truly so much more complex than this. The brain's decision to output a pain experience is multifactorial and completely unique to each individual - and in the case of persistent pain, is actually rarely due to a single structural reason like tissue damage.

Similarly, if someone experiences what they would call "tight" hips ("tight" of course being a vague, subjective word with no single definition for all bodies), the possible reasons for this tightness are many and varied, from a restriction in the capsule of the joint itself (which would not be addressed by passive stretching) to issues in how the brain is coordinating muscle activity (more of a motor control/neuromotor issue that is also not solved by passive stretching). Therefore, when we as a yoga community assume that the solution to all inflexibility issues is to stretch our tissues out in poses like pigeon pose, we are missing a much larger picture of how flexibility, performance, and joint function works.

This image of pigeon pose that I found online makes me feel weird. :)

This image of pigeon pose that I found online makes me feel weird. :)

WHY I SKIP PIGEON POSE - REASON #2

With all of that said, this isn't the only reason that I choose to skip pigeon pose in my classes. Even though passive stretching is not the universal solution to inflexibility issues that we yogis tend to believe it is, it still has some nice benefits, and I certainly include some passive poses in my classes. But pigeon pose also happens to incorporate some precarious joint positioning for the front knee and hip with the added weight of the torso and upper body lying on top of them, which isn't necessarily beneficial for these joints. Although there are ways to modify the pose to support these joints in a healthy way, these options are rarely offered or taught in detail in most yoga classes. And even if they were, most yoga studios don't have enough props to support every student the way they would need to be set up for optimal loading of the front knee and hip.
 

THREE ALTERNATIVES TO PIGEON POSE

And so, without further ado, I present to you... three alternatives to pigeon pose! These are three excellent ways that a pose like pigeon pose can be practiced, but with the added benefit of positive change for the tissues of the hip and a more efficient path toward increased flexibility. You'll notice that all three examples incorporate some degree of muscle activation (versus assuming the poses passively). This is because research has suggested that strengthening muscles through their full range will result in more flexibility gains faster than passive stretching alone. This is likely because when we actively contract our muscles during a stretch, this signals our nervous system that this range of motion is safe, and our nervous system will therefore be more likely to allow more range of motion in the future. Additionally, when we contract our muscles during a stretch, we load our connective tissues via muscular force, which increases their load-bearing capacity (i.e. their strength) over time. Strong connective tissues equals strong, efficient movement, functional joints, and decreased risk of injuries in the future.

Consider offering these options as an alternative to traditional pigeon pose in your yoga classes, or if you find yourself in a yoga class in which pigeon pose is taught, consider trying one of these "pigeon-ish" poses instead. (Just for the record, I don't think pigeon is an absolutely terrible pose, and I would certainly not "judge" a yoga teacher for including it in their class - pigeon is extremely ubiquitous in our yoga community and it sometimes feels like our students almost expect it. But once you learn a bit more about current stretching science and the connection between strength and flexibility, you might be inspired to change up what you offer to reflect these new understandings.)

If you decide to experiment with these pigeon alternatives, notice how it feels to strengthen your hips instead of passively stretch them in this classic pose, and enjoy the benefits that these new movements offer to your body and mind! (Also be sure to check out the further reading resources listed below these videos...)

**Related: Keeping Your Yoga Teaching Current Online Training

 
 
 

Further Reading & Exploration

Blog Post: Resistance Stretching with Charlie Reid & Jules Mitchell

Related Online Workshop by Jenni: Re-Imagining Hip Openers: A Yoga Anatomy Workshop

Related Online Class by Jenni: Hips-Focused Practice #2

Related Blog Post by Jenni: Stretching Is In Your Brain: A New Paradigm of Flexibility & Yoga

The Easiest Mistake to Make in Backbends

I am sooo thankful to have published a second article in Yoga International! It's all too easy to do backbends in a way that will make your spine mad at you :), and I hope this article will provide lots of helpful info for how to approach these poses in a way that will offer true positive change in your body. Thanks so much for reading, guys!

https://yogainternational.com/article/view/the-easiest-mistake-to-make-in-backbends

In other news, I'm working on a new series of posts for my blog on shoulder mechanics in yoga. I haven't written specifically about the shoulders here yet, so I'm hoping that these posts will help fill in some missing info on this important area of the body. Stay tuned for this and more great movement info to come!

Stretching Is In Your Brain Part 2: What Is The Value Of Flexibility Without Strength?

In Part 1 of my “Stretching Is In Your Brain” series, we looked at some updated information on what happens physiologically inside of us when we stretch. To re-cap, new science is revealing that the widely-held belief that we physically grow our muscles longer during a stretch is inaccurate. Instead, flexibility is controlled by our nervous system, which determines how far it will allow us to move into a stretch based on how safe it perceives our body to be in that range of motion.

As yoga practitioners and teachers, we’ve been treating our muscles as though they are independent entities which we can mold through direct manipulation, but in reality our muscles are just the peripheral, subservient component of a much broader system of communication and control. Let’s explore some of the implications that this major paradigm shift has for how we approach the body in our yoga practice.

 

WHAT DOES PULLING HARD ON OUR TISSUES ACHIEVE?

In the old paradigm of stretching in which we believe that we’re physically pulling our tissues longer like taffy when we stretch, it would logically follow that in order to gain more flexibility, we should simply pull harder and deeper. Wringing oneself deep into a spinal twist or receiving a strong adjustment from a teacher intended to push your range of motion further are common examples of this strategy. But we now understand that flexibility is much less about using brute physical force to grow our muscles longer, and much more about using intelligent communication to suggest to our nervous system that a particular range of motion is safe.

In fact, the “brute force” method of stretching is problematic in multiple ways. When we stretch, our muscles aren’t the only tissues that are affected. Muscles are surrounded by and interpenetrated with fascia, which also makes up the body’s ligaments and tendons. When we move our body into a stretch, both our muscles and our fascia experience the stretch at the same time.

It’s important to understand that fascia has only a set range that it can stretch. Stretching offers many benefits to the health of our fascia, but it won’t change the range of this tissue. This means that after fascia experiences the load of a stretch, only one of two possibilities can happen: 1) it returns to its original length after being stretched or 2) it is stretched too far and is damaged. And that’s it! We don’t make our fascia “longer” when we stretch. And if we pull too hard on this tissue in an effort to elongate it, we will most likely move beyond its ability to withstand the load, which will ultimately lead to injury. As counterintuitive as it may seem, for the health and balance of our structure, we actually want our fascia to be quite “stiff” and “resilient”.

 

BUT HOW MUCH STRETCH IS THE RIGHT AMOUNT?

We understand that stretching intensely does not benefit us, but how do we know where that boundary lies in our body as well as our students’ bodies? Here’s a key rule to use in your practice: when we stretch, we should only move into a range of motion over which we have muscular control. This is because our nervous system feels safest when it senses that we have control over our movement.

Put another way, we don’t want to create flexibility without the strength to support it. If we stretch within these parameters, our practice is likely to contribute to a balanced body that moves well. However, when we stretch into a range in which the targeted muscles cannot function, we are creating excessive mobility (and more than likely hypermobility) that we don’t have the ability to stabilize. 

Hanumanasana, yoga's forward split.

Hanumanasana, yoga's forward split.

To illustrate this point, let’s look at hanumanasana, yoga’s forward splits. If we practiced this pose with the goal of building flexibility within the context of strength, we would only move as deep into the shape as the muscles of our legs could maintain control. Picture it: without using your arms pressing into the floor, you would slowly lower down into your full hanumanasana and then use those very same leg muscles to lift yourself all the way back up (again, without the use of the arms!) This might seem like a superhuman acrobatic feat, but I promise it would be possible if you truly worked to build power at your end range.

My friend Maddy demonstrating gomukasana arms.

My friend Maddy demonstrating gomukasana arms.

Let’s touch in on a few other asanas to see how this “stability at your end range” principle might apply. Padmasana, or lotus pose, is one of yoga’s classic asanas. Most of us use our arms to pull our legs into this shape. We also sometimes use momentum to quickly fold our legs into lotus, but momentum is another method of moving into a range of motion that we don’t have the strength to control. Is it any wonder that padmasana is notorious for tearing soft tissue in many a yogi’s knee joint? Try this instead: without using your arms or momentum, use only the muscles of your legs to fold your feet as close to your hips as you can and breathe there. This shape - one over which your muscles have control - is the correct stability edge for your body. Another great example is ekapadasirsasana, yoga’s leg-behind-the-head pose. If that leg can climb behind your head itself, without the use of your arms, then you’re staying within your excellent strength-at-your-end-range limits. But I have yet to see a yogi who can accomplish such a daunting task! A less obvious pose in which we commonly move beyond our stability edge is gomukasana, or cow-face arms. Many people like to use their opposite arm to help that bottom arm climb higher up the back, but as soon as we interfere with that bottom arm’s own ability to move itself to its edge, we are stretching past our active range of motion and into unsupported mobility.

 

IN CONCLUSION...

I know that so many of us yogis are used to going as deep as our bodies will allow in our poses. Think of the innumerable beautiful photos that yoga teachers have in their portfolios or on Instagram of their bodies looking extremely graceful in a perfectly-executed forward split. (I don’t personally have a photo of myself in hanumanasana, but I certainly have photos of many other asanas in which I’ve moved well beyond my active boundaries.)

The science behind utilizing stability as a container for flexibility is not yet widely understood in the yoga world - and not surprisingly, the number of overstretching injuries in our community is quite high. But as a yoga community, we have to ask ourselves some tough questions: if you have the mobility to move deeper into a pose than your muscles can control, where is that mobility coming from, what is it offering you in terms of how well your body functions, and how many more times can you practice this pose before an injury occurs? What is the value of flexibility without the strength to support it? This is the kind of shift in thinking that yoga needs to make if we want our practice to truly offer the structural health and other long-term benefits like aging with ease that so many yoga practitioners seek.

Stretching is In Your Brain: A New Paradigm of Flexibility & Yoga (Part 1)

In yoga, we tend to place a lot of emphasis on stretching as a means toward more flexibility. But what actually happens in our body when we stretch? Most of us envision our bodies as consisting of play-doh like tissues that we pull on and make longer through stretching, but new science is revealing to us a model of stretching that is much more complex, dynamic, and fascinating than what has previously been imagined. And it turns out that thinking of our bodies in this older “play-doh” like version may be counterproductive and can lead to a number of injuries and structural problems resulting from our yoga practice. In order to keep our wonderful yoga tradition evolving and current, it’s important that we understand this new and fascinating science of stretching and any implications it might offer for our practice and teaching.

 

A NEW PARADIGM OF FLEXIBILITY

Biomechanics-based Restorative Exercise™ teaches a lot of new and eye-opening information about stretching and flexibility that isn’t yet common knowledge in the yoga world. Additionally, the wonderful yoga teacher Jules Mitchell is on a mission to educate the yoga community about the science of stretching. Her recently-completed master’s thesis in exercise science is a comprehensive literature review of the most current scientific research on stretching to date, and it’s full of an abundance of important information for yogis.

Utilizing the innovative knowledge that these resources offer, let’s examine some of our current beliefs about stretching and introduce some helpful ways we can begin to update these beliefs to reflect the newest scientific word on the street.

 

WHAT WE THINK HAPPENS WHEN WE STRETCH

Most people think of their muscles as being either “long” or “short”, and that during a stretch, they are targeting their “short” muscles by physically “lengthening” or “loosening” them. In this stretching paradigm, our muscles are mold-able tissues like taffy or play-doh which we can form into a shape of our choosing by simply pulling or pushing on them. For example, when we fold forward into paschimottanasana (seated forward fold), we tend to imagine that our hamstrings are physically growing longer in that moment of our stretch in the same way that taffy would grow longer if we tugged on both of its ends for awhile. We imagine that when we release paschimottanasana, our hamstrings remain just a bit longer than they were before we did the stretch. And we also imagine that the longer and deeper we hold a pose like paschimottanasana, the longer and looser our hamstrings become.

This stretching paradigm is what most of us were taught in our yoga classes, workshops, and teacher trainings. It’s completely understandable that we might see the body as working like this, but new research is revealing a very different version of the biomechanics of stretching.

 

THE NEW SCIENCE OF WHAT HAPPENS WHEN WE STRETCH

We all know that when we stretch, we experience a feeling of “tightness” at our end range of motion - a sensation that limits us from moving any deeper into the stretch. We have traditionally defined this “tight” sensation as the result of having reached the end length of the muscle(s) we’re stretching. In other words, we pulled on the ends of our muscle until we reached its maximum physical length, and once we hit that boundary, the stretch stopped and we felt the “tightness”. With enough stretching, we could increase the length of our muscle and therefore move further into our stretch with time.

The king of flexibility.

The king of flexibility.

But we now understand that increasing our flexibility has much less to do with the physical length of our muscle tissue, and much more to do with the part of our body that controls and moves our muscles: the nervous system. Our brain and spinal cord, which make up our central nervous system (CNS), are constantly monitoring the state of our body. One of the main imperatives of the CNS to keep our body where it perceives it is safe. Normal movements that we make throughout our day are considered safe by the CNS because it knows and trusts them. But on the other hand, our CNS is not familiar with ranges of motion that we never move into, so it’s much less likely to consider those places safe. When we stretch, if we move into a place that the CNS isn’t familiar with, our nervous system will likely end our stretch by creating a sensation of discomfort at the end range of motion it considers safe. 

For example, if you happen to work on your computer for 8 solid hours a day (and if you don’t take frequent intermittent stretch breaks for your shoulders - hint hint :) ), the CNS becomes very familiar with the arms-forward position that you use while typing and considers that range safe. Then later, if you decide to do a chest stretch in which you take your arm out to the side and then behind you, the CNS doesn’t feel that that movement is safe because you so rarely go there, so it will limit your range very early on in the stretch.

A major takeaway from this new flexibility paradigm is that when we increase our range of motion through stretching, it isn’t because we pulled on our tissues and made them longer. It’s because we visited the edge of our stretch (also called stretch “tolerance”) enough times that our CNS started to feel comfortable there and it began to allow us to move deeper into that range.

 

OKAY, I THINK I’M STARTING TO GET IT, BUT WHY IS THIS IMPORTANT?

It’s definitely interesting and more scientifically accurate to understand this previously-overlooked role that our nervous system plays in flexibility. But whether it’s your nervous system or the physical length of your muscles limiting you in a stretch, why does it matter? Isn’t a stretch a stretch, regardless of the mechanism behind it?

That’s a great question - I’m so glad you asked! The main answer has to do with what tissues are being targeted when we stretch. We often think and talk about stretching our muscles in our yoga poses (i.e. paschimottanasana stretches our “hamstrings”), but in truth our muscles are surrounded by, interwoven with, and inseparable from our fascia. Our fascia is our incredible body-wide web of connective tissue that is literally everywhere inside of us, and it includes our tendons and ligaments. Muscles and fascia are two distinct tissues with different properties, but both are affected when we stretch. And how we choose to stretch, which is based on whether we believe that we’re physically lengthening our muscles (old paradigm) or increasing our nervous system’s tolerance for the stretch (new paradigm), determines how our fascia will be affected during the movement. (Preview for Part 2 of this post: if we’re going with the older “pulling on our tissues like play-doh" paradigm, we’ll feel more drawn to stretching deeper and harder in our poses, which is much more likely to simply damage our tissues than give us the flexibility we seek.)

I’ll elaborate more on this and other important topics, like how we might choose to apply this new information to our yoga practice and teaching, in my next blog post. Stay tuned, guys! And in the meantime, if you’re interested in further reading, check out this awesome article by Jules Mitchell (written for a pretty science-oriented reader). See you for Part 2 soon!

What Does Your Twist Tell You About The Strength Of Your Core?

We know it’s important to have a strong, functioning core. But did you know that working our core muscles is only one half of the core strength equation? In order for our core to be truly strong, it must also be flexible and supple. As counterintuitive as it may seem, mobilizing our waist area with poses like twists has just as much to do with core strength as “core work” does. However, the traditional alignment we use for our twists in yoga often misses this important core strengthening benefit. In this article, we’ll use biomechanics to uncover some common twisting “cheats” so we can turn our twists into the awesome core-focused poses they should be!


A TIGHT CORE IS A WEAK CORE

(Update, February 2016: I really appreciate the sentiment of this section of this post, but since the time that I wrote it I have learned more and shifted my perspective. The term "tight" does not have an objective, scientific meaning, and there is also currently no evidence that I know of that suggests that strengthening a muscle will cause it to become 'short and tight', even though this a very commonly-held belief. I still love this blog post in general (especially the great photos of twisting alignment below), but this specific section right here is a tad outdated now.)

The first time I heard the statement that tight muscles are weak muscles, I was certainly dubious. Everyone knows that short, tight muscles are strong while long, loose muscles are weak, right? Isn’t that the way the body works? But it turns out that this common belief is actually an anatomy myth that doesn’t hold true once we examine the science of musculoskeletal function. It is correct that in order to be strong, a muscle must be able to contract - but this is only half of the movement equation. For true functional strength a muscle must have the ability to both contract and release.

When we talk about whether a muscle is strong, we’re really referring to how well it can “generate force”. This takes place at the level of the sarcomere, the basic contractile unit of a muscle. When a healthy muscle contracts, its sarcomeres generate force by shortening, and afterward they release and lengthen again so that they’re ready to shorten the next time the muscle is asked to contract. But if we work our muscles so much that they become short and tight, their sarcomeres are now in an overlapped, “locked short” position and can no longer release back to the place where they can contract again. Muscles like these are not functionally strong because they have a very limited ability to generate force.

So what happens to the muscles of our core if we “strengthen” them with a bunch of core work until they become short and tight? We might end up with defined abdominal muscles like your stereotypical six-pack abs, but if at the micro level, our sarcomeres are overlapped and can’t release back to their optimal force-generating position, our core is not physiologically strong.

 

MOBILIZING FOR CORE STRENGTH

For today’s purposes, let’s define the “core” as the area between the rib cage and the pelvis. We now understand that in order for this area to be strong, the muscles and fascia that live there must also be supple. One of the best ways to mobilize these tissues is through twisting. A twist takes place when we rotate our rib cage relative to our pelvis, our pelvis relative to our rib cage, or both at the same time.

Here’s a great visual that demonstrates this movement. My top hand represents a rib cage, my bottom hand is the pelvis, and the blue fabric in between is the muscles and fascia of the core:

No twist has taken place here because the rib cage and pelvis are facing the same direction.

No twist has taken place here because the rib cage and pelvis are facing the same direction.

Successful twist! The rib cage and pelvis have rotated relative to each other (see how the hands have turned?) and there's clearly a twist in the blue fabric.

Successful twist! The rib cage and pelvis have rotated relative to each other (see how the hands have turned?) and there's clearly a twist in the blue fabric.

Ideally a twist in our body would mobilize the muscles of our waist in the same way that these hands mobilized the blue fabric. Most of us are actually much stiffer through the waist than we realize, though, meaning that our true twisting range of motion is relatively small. But because of a prevailing idea in yoga that going "deeper" in a pose is better, we tend to bypass placing a load on the tight tissues of our waist in favor of moving where it's already easy for us to move, ending up in a shape that creates the illusion of a twist without mobilizing our core muscles much at all. Let me show you what I mean.

Here’s a wonderful yoga student named Craig (who also just happens to be my husband!)


Here are a few places where Craig can move really well in his body:

He   can move nicely at his neck - see how he can turn his head all the way to the side?

He can move nicely at his neck - see how he can turn his head all the way to the side?

He can also move his arms relative to his torso with ease.

He can also move his arms relative to his torso with ease.

In fact, Craig can combine these two movements to create a quite aesthetically-pleasing twist, wouldn’t you say?

But wait... is this a twist? Or does it just appear on the surface to be a twist? Well, if you use your anatomically-informed eyes to look at the Ganesha print on the front of Craig’s shirt, you’ll see that Ganesha is facing straight forward - he didn’t move through space at all. If Ganesha didn’t move, then Craig’s rib cage didn’t move, which means that his core didn’t receive a stretch at all, and this shape was, in fact, a twist “illusion”.

Another easy way to miss your best twist is to lift your chest instead. If we arch our spine when we twist, we’ll feel like we’re deeper in our twist because we moved more, but we’re simply mobilizing a place that wasn’t the target area of our pose - with the added drawback of creating compression in our lumbar spine. This kind of twist looks something like this:

Do you see how Craig has lifted his chest and tilted his rib cage backward in this example? He has also let his head rotate much further around than his rib cage, and if you look closely, you’ll see that his eyes have moved even further around than his head (!), all of which makes Craig feel like he moved deeper into his twist, when in reality his core didn’t rotate much at all.

In this final example, Craig is demonstrating a true core-mobilizing (and therefore core-strengthening!) twist:

He hasn’t arched his spine to create excessive movement in non-optimal places, and the change in angle of Ganesha shows us that he successfully turned his rib cage relative to his pelvis. An aligned twist like this is the essential ingredient to core strength that many of us have been missing. Your body will love it when you find it!

 

IN CONCLUSION...

In our continuing pursuit of an updated yoga practice that’s informed by biomechanics and anatomy, it’s helpful for us to look beyond the oversimplified categories we’ve been taught for our poses. “Spinal twists” and “core work” are actually intimately connected when it comes to core function. And as has become a central theme of my blog posts, in order for our twists to have a beneficial impact on our core, we need to let go of the idea that “deeper is better” and learn to work within our body’s true limits. The path of seeing ourselves accurately and clearly is an essential key to the transformative effects that yoga has to offer!

 

Related Online Class: Twisting-Focused Flow

Related Online Workshop: Anatomy of the Spine for Increased Core Connection