5 Things We Didn't Learn About the SI Joint in Yoga Teacher Training

Today I'd like to offer 5 insights about the SI joint (or sacroiliac joint) that we don't tend to learn about in yoga teacher training, but which definitely have implications for how we teach and practice yoga. Also included are multiple scientific references for each point. I invite you to read these points with an open mind and a willingness to possibly question your own biases (because I know I have had to question my own many times as I continue to study and learn about the body!)

 

 

Insight #1: The SI joint is a strong, resilient structure that is supported by thick layers of some of the strongest ligaments and muscles in the body. [Ref, Ref, Ref]


Although the SI joints are some of the strongest joints in the body, we often receive the impression from our yoga teacher trainings that they are actually quite fragile structures that are vulnerable to injury and instability from the slightest misalignments in yoga. For example, we are sometimes taught that if we hold our pelvis "square" when we twist in poses like twisting triangle (parivrtta trikonasana), we can "tweak" our SI joints by pulling them out of alignment, and we should therefore instead always be mindful to let our pelvis turn slightly in the direction we are twisting in these poses. Another example is that we are often instructed in backbends like bridge pose (setu bandha sarvangasana) and locust pose (shalabhasana) to relax our glutes (or to at least soften them somewhat) because if we contract them too hard, this could injure our SI joints.

One reason we tend to believe that our SI joints are vulnerable to damage in yoga is that we generally learn about SI joint anatomy by looking at a skeleton model or a drawing like this one here:

 
 

When we see the bones by themselves like this, we can certainly get the impression that the sacrum can "slide around" relative to the pelvis easily, resulting in an SI joint that can be pulled "out of place" or "strained" due to small misalignments in yoga poses.

However, what we rarely see after learning about the bony anatomy of the SI joint's structure is an image like this, which depicts all of the extremely resilient, tough ligaments that surround and support the SI joints from all sides, holding them firmly in place:

The ligaments that support the SI joint include the anterior sacroiliac ligament, interosseus sacroiliac ligament, sacrotuberous ligament, posterior sacroiliac ligament, and sacrospinous ligament.

The ligaments that support the SI joint include the anterior sacroiliac ligament, interosseus sacroiliac ligament, sacrotuberous ligament, posterior sacroiliac ligament, and sacrospinous ligament.

 

A rarely-cited fact is that the ligaments of the SI joint include some of the strongest ligaments in the human body! [Ref]

If after seeing an image of the SI joint's ligamentous support, we were then shown an image like this one below, which depicts all of the thick musculature and fascia on top of all of those ligaments on top of the SI joints (including the powerful gluteus maximus, the largest muscle in the human body), we might have reason to be more confident and less fearful about this naturally strong, sturdy area of our body:

 
 

 

While our SI joint can certainly be injured and we can absolutely experience pain there (more on this in #4), it would take much more force to injure a healthy SI joint than the relatively low loads involved in a yoga practice.

 

Insight # 2: The SI joints are inherently stable by design, not inherently vulnerable. [RefRef, Ref]

The SI joints serve to transfer the load of the upper body to the lower body, as well as to distribute forces moving up the body from below. Therefore, stability is built into their very design so that these forces can be transferred efficiently through the pelvis.

In fact, the SI joints are so inherently stable that there is only the tiniest amount of movement available at these joints. While some sources state that the amount of motion available at the SI joint is a barely-perceptible 2-4 millimeters, other sources actually state that there is in fact no movement available at these joints at all.

 

Insight #3: Even if the SI joints could "slip out of place" easily, we don't have a reliable way to assess this in someone's body. [Ref, RefRef, Ref, Ref]

SI joint movement is so minute and difficult to identify with either manual palpation or radiographic imaging that none of the tests traditionally done to assess the SI joint have been shown to be reliable. Without an accurate method for testing the position and movement of an SI joint, how can we definitively know that someone's SI joint is "out of place", "misaligned", or "unstable" in the first place?

 

Insight #4: SI joint pain is certainly a common experience among yogis and non-yogis alike, but SI joint pain does not necessarily mean that there is an SI joint injury. [Ref]

His left hand would actually be a bit lower if this were truly SI joint pain. (I couldn't find a photo that showed the right spot - they all seem to feature general low back pain instead!)

His left hand would actually be a bit lower if this were truly SI joint pain. (I couldn't find a photo that showed the right spot - they all seem to feature general low back pain instead!)

Thankfully, insights from modern pain science are beginning to become more widely known in the yoga world, but if this topic is new to you, consider taking a look at the introduction to pain science article that I wrote for Yoga International a couple of years ago. It turns out that despite what we have traditionally been taught, pain and tissue damage often do not correlate on a 1:1 basis - especially when pain is experienced in a more persistent or chronic way. Pain is actually a much more complex, multi-factorial phenomenon than simply "I have tissue damage and therefore that is what is creating my pain."

As an example, if someone has SI joint pain and they have experienced a recent blunt force trauma to their pelvis region (think from a car accident or a major fall of some sort), then their pain is very likely due to an actual SI joint injury. Once this injury has healed, this pain should subside. In fact, my husband and I suspect that his SI joint may have been injured many years ago in yoga by a strong adjustment he received. His yoga teacher forcefully pulled both of his legs behind his head in a pose called dwipada sirsasana and he felt a searing pain at his left SI joint in that moment. Thankfully the injury healed, but this type of forceful, deep adjustment seems like it was enough to cause injury to his SI joint (or at least a strong protective output of pain in the area).

But in contrast to those examples of short-term pain associated with acute injury, when someone's SI joint pain is more long-term or chronic in nature (chronic pain is sometimes defined as pain lasting longer than 3 months), it's less likely that this pain is connected to a specific injury or damage to the area, and more likely that the person's nervous system is instead sensitive around that spot. Nervous system sensitivity and an output of pain can be the result of many different factors aside from actual tissue damage. Other influences include emotions, past experiences, stress levels, beliefs - and particularly beliefs about one's body. In fact, the more that someone believes that their SI joints are fragile and vulnerable, the more likely their nervous system is to perceive threat in that area and to output pain there. And conversely, the more someone learns that their SI joints are strong, inherently stable structures well-supported by some of the most durable ligaments and muscles of the body, the less likely their nervous system will be to perceive threat and output pain in this area. [Ref, Ref]

 

Insight #5: Warnings about protecting the SI joint in yoga are often unnecessary.

As we have seen, the SI joints are held stable by a ligamentous and musculature support structure that is strong and resilient - and the joints themselves have only a tiny amount of movement available (if any) in the first place. With this in mind, whether or not we hold our pelvis square when we twist in yoga is probably not a likely mechanism for SI joint injury either way, given the relatively low loads involved in the pose. And whether or not we squeeze our glutes in backbends in yoga is also unlikely to be a mechanism for SI joint injury; in fact, contrary to the common cautions in yoga, contracting our glutes in backbends has actually been shown to have a positive stabilizing effect on the SI joints. [Ref, Ref]

Additionally, it's common these days to hear warnings about "overstretching" the ligaments of the SI joints in yoga poses, leading to SI joint instability and pain. (I myself used to offer such cautions too - the idea just seems to make sense!) We are learning, however, that this is not actually how ligaments respond to stretching. During a stretch, a ligament lengthens temporarily, but then it returns to its resting length afterward (sometimes after a short recovery period.) Despite popular warnings, passive stretching has not been shown to lengthen and destabilize ligaments and joints. I have personally changed my perspective on this issue due to insights from newer research and teachings from my yoga biomechanics mentor Jules Mitchell.

(For more reading on the fascinating topic of stretching, ligaments, and joint instability with lots of research references cited, I encourage you to read this recent blog post by Greg Lehman, a researcher and clinician whose work I have followed and admired for quite some time now. But fair warning: this post is long and is really territory for the more serious body geeks among us. You can always jump right to "Questionable Assertion #3", which specifically addresses these topics and might offer some new, interesting information for you to ponder.)

 

IN CONCLUSION...

In summary, SI joint pain is common among yogis and non-yogis alike and there are many factors that can contribute to it, including physical, psychological, and social ones. How we align our body in yoga is probably not a mechanism for SI joint injury, though (strong, forceful adjustments by yoga teachers excepted!) Rather than worrying too much about alignment for SI joint protection, a more effective means to injury-prevention is to simply strengthen and condition the muscles and connective tissue that support the SI joint, so that their capacity to handle load increases.

Thank you for reading these 5 points with an open mind, and I hope to see you on the mat virtually or in person in the near future!

Top 5 Movement Science Insights For Yoga Teachers

These are 5 of the most eye-opening insights I have learned from anatomy, physiology, kinesiology, and pain science that have given me a much different perspective on the body than the one I learned through my yoga studies alone. I hope you find these ideas interesting and inspiring for your own yoga practice and teaching!

Each of these insights is simply my best offer at a summary and takeaway for yoga teachers who might not have the time or interest to study these issues thoroughly on their own. There are volumes more to be read about each of these points from primary and secondary sources, so feel free to investigate the links and references I've included below, or to do your own research on these topics to help you come to your own conclusions.

If you're interested in how one might embody these Top 5 insights in their yoga teaching, consider trying some classes in my online class library, which is a great resource of practices from myself and other wonderful science-minded yoga teachers I admire.

Please read the insights below with a willingness to question your own biases and an openness to incorporate critical thinking into your approach to yoga and movement. Without further ado, here are my Top 5 Movement Science Insights For Yoga Teachers!

 

 

MOVEMENT SCIENCE INSIGHT #1: STRETCHING & STRENGTHENING ARE NOT OPPOSITES

One of the core rules we tend to learn in our yoga teacher trainings is that after we've "worked" or “strengthened” a muscle or muscle group, we should then stretch the area to lengthen it back out and restore "balance". The reasoning behind this rule is usually that when a muscle "works" or "contracts", it is shortening. Therefore to avoid leaving your muscle in an excessively shortened state, you should balance it out by "lengthening" or "stretching" it after you've worked it.

This idea would make sense if muscles did only shorten when they contract. But shortening while contracting is actually only one part of the physiological equation - muscles work just as often as they lengthen too. Picture your hamstrings and the way they lengthen while they're working to control your swan dive into uttanasana (standing forward fold) in yoga. When a muscle works as it lengthens, this is called an "eccentric contraction", and we move this way all the time in our normal human movements. [Ref]

Because muscles can and do actually contract through all of their ranges (short, long, somewhere in between, etc.), it is clear that the physiological opposite of a muscle contraction is not a stretch. With this in mind, it might be time to re-think our classic "strengthen it, then stretch it" rule!

 

MOVEMENT SCIENCE INSIGHT #2: NO YOGA POSES ARE INHERENTLY "BAD" OR "GOOD"

Last year I wrote a blog post called Are Some Movements Inherently Bad? which basically suggested that no movements are inherently “bad”, and the only truly bad movement is one for which your individual body is not prepared or conditioned. But the inverse of this insight is also true. While no movement is inherently bad, no movement is inherently good, either. There is a trend in the yoga world toward teaching yoga poses and other movements like “corrective exercises” that are thought of as "better", more "functional", or "healthier" for the body. But the reality is that movements don't have inherent value (i.e. "better for you", "worse for you", etc.) outside of the specific context of who is practicing the movement and with what goal in mind.

We honor the complexity of the human body and its relationship to movement when we avoid valuing certain yoga poses and movements as inherently better, more functional, or worse than other yoga poses and movements. Context and individualized goals are the main determinants of what makes a movement “good”, “bad”, “functional”, or “dysfunctional”.

 

MOVEMENT SCIENCE INSIGHT #3: ALIGNMENT IS LESS ABOUT INJURY-PREVENTION AND MORE ABOUT LOAD-OPTIMIZATION

We generally learn in our yoga teacher trainings that alignment is important in yoga poses primarily because it prevents injuries. However, we’re now learning that the categories of alignment, injury, and pain are not as interrelated as we have previously been taught. Many people exhibit “poor alignment” and are pain-free, while many others exhibit “stellar” alignment and have chronic pain (and to make matters more confusing, pain and injury (i.e. tissue damage) are also not always correlated either.) [Link]

It turns out that the human body is more resilient and adaptable than previous models of alignment and pain have accounted for. Our body actually has a remarkable ability to adapt to become stronger in response to the loads it experiences (as long as those loads aren’t beyond the ability of our tissues to withstand.) [Link] Therefore if we habitually position ourselves in a way that is different from “ideal alignment”, it’s less likely that our body will sustain inevitable damage from the “misalignment” and more likely that our body will simply adapt to better handle the loads of this alignment. (This is assuming that the joints in question are asymptomatic and healthy, of course!)

Now in a high-load situation, such as squatting in the gym with a 300-pound barbell on one’s back, alignment is undeniably an important tool for minimizing risk of injury. [Link] Activities like this involve high forces that are more likely to be beyond the ability of our tissues to withstand, and so aligning our joints intelligently is definitely recommended.

But compared to heavy weightlifting scenarios, yoga is for the most part a low-load activity. Small variances in alignment under low load are not enough to cause inevitable injury and damage in most bodies. For example, if someone’s front knee drifts inward a few centimeters in warrior 2 (breaking the classic alignment rule of keeping the knee stacked directly over the ankle), the tissues of the knee will most likely respond to that load by adapting to become stronger at that angle. And if the shoulders drift slightly out of “joint-stacked” alignment over the wrists in plank pose, the shoulders, elbows, and wrists should be signaled to grow stronger and better able to handle load from this new angle.

In fact, exposing our body to variable loads like this is actually a great way to prevent injury because it helps condition our tissues to become stronger at all angles, rather than strong in only the classic “joint-stacked” position of traditional alignment rules. I would argue that increasing the ability of one's tissues to tolerate load by strengthening the body at all angles and ranges is a much more effective strategy for injury-prevention than "alignment" is.

These days I view alignment as a tool that helps my students direct the loads in their bodies where I intend for those loads to go, rather than as a necessary tool for injury-prevention.

 

MOVEMENT SCIENCE INSIGHT #4: WE USE TOO MUCH FEAR-BASED LANGUAGE AROUND ALIGNMENT IN YOGA

This insight piggybacks right onto insight #3. It’s very common in the yoga world to pepper our alignment instructions with cautionary language, such as “Align your front knee right over your ankle in Warrior 2 to protect your knee” or “Press your pubic bone into the floor in shalabhasana to keep your low back safe.”

As well-intentioned as they are, warnings like this can actually serve to instill a false sense of fragility in our students, which can counterintuitively result in their experiencing pain. We know now that pain is a creation of the nervous system in response to a perceived threat. And our beliefs about our body are actually one influence that can directly escalate or de-escalate our nervous system’s perception of threat and output of pain. [Ref], [Ref], [Ref] Therefore the more we trust in the robustness and resiliency of our body, the more we communicate a message of confidence to our nervous system, which is likely to result in lower threat levels and decreased pain. And conversely, the more we believe that our bodies are innately fragile and vulnerable to injury from low loads and small micro-“misalignments”, the more likely our beliefs are to contribute to increased threat levels and increased pain.

In warrior 2 pose, stating that keeping the knee directly above the ankle is important “to protect your knee” is a potentially nocebic suggestion to offer to our students. (A nocebo is a negative expectation of an otherwise harmless event or action that causes negative consequences like pain.) Likewise, stating that the pubic bone should stay grounded in shalabhasana “to keep your low back safe” suggests to our students that their spines are fragile structures that will experience damage if their pelvis is tilted a few millimeters in the “wrong” direction.

Instead of using cautionary, nocebic language about alignment in our yoga classes, consider talking about alignment in terms of what it helps us achieve in our poses. For example, in warrior 2 we could say “Keep your front knee lined up over your ankle to engage your lateral hip muscles” or “Press your pubic bone into the floor in shalabhasana to lengthen your low back and direct the backbend into your thoracic spine.” These types of cues utilize alignment more for load-optimization reasons and less for injury-prevention reasons. Instead of instilling a sense of fragility about their bodies, these types of cues encourage increased body awareness in our students, which can be confidence-building and empowering.

 

MOVEMENT SCIENCE INSIGHT #5: TWO COMMON YOGA CUES WE CAN STOP USING

We often teach yoga poses in a way that tells our students which specific muscles they should (or should not) be contracting in particular movements.

In certain contexts, suggesting which muscles a student should be using at any given time can be a useful type of guidance. But it's helpful to realize that as a general rule, our nervous system actually does a good job of automatically organizing and coordinating the movement of our body all on its own, without needing much conscious input from our thinking mind. In fact, consciously "micromanaging" which muscles our nervous system chooses to recruit can often interfere with our built-in, sophisticated motor control system in a way that results in less efficient movement. [Ref]

With this in mind, here are two cues that are very common in the yoga world today that we could all use to stop giving:

1) The glutes & bridge/wheel: there is no need to tell our students that they should "soften their glutes", "relax their glutes", or otherwise disempower the main muscles of hip extension that their bodies naturally recruit when they lift their hips up into bridge pose (setu bandha sarvangasana) and upward-facing bow pose (urdhva dhanurasana). [Ref]

2) Arms overhead & shoulder positioning: there is no need to cue our students to "pull your shoulders down your back" when their arms are overhead. When our arms lift up, our shoulder blades naturally rotate and lift along with the arm movement. [Ref] This is a normal, optimal movement that is often referred to as "scapulohumeral rhythm", and it is not helpful to interfere with this natural coordinated action by trying to consciously pull the shoulder blades down the back to prevent them from lifting.

 

Thank you for reading these Top 5 insights with an open mind, and I hope to see you on the mat virtually or in person in the near future!

Fascia Myths and Fascia Facts

Have you noticed that the word “fascia” has become somewhat of a buzzword in the yoga world lately? There have been lots of articles written about this newly-appreciated bodily tissue (I myself have written two of them in the past few years!), and fascia has become a focus in many yoga classes - especially those that include rolling on self-massage tools like balls and foam rollers.

I understand this preoccupation with fascia, because it is a truly fascinating topic. Fascia is a type of connective tissue that forms a continuous body-wide web inside of us, surrounding and interpenetrating all of our muscles, bones, organs, nerves, and blood and lymph vessels. In fact, in addition to forming the architecture that weaves our inner structures together, our connective tissue system as a whole also absorbs and transmits force inside of us, working in conjunction with our muscular system to create smooth, efficient movement. Such insights have the power to expand the way we understand movement, which is very exciting!

In addition to these inherently interesting facts, there are other claims commonly made about fascia that are widely-believed, but reach a bit too far ahead of the research to be actually supported. Today I’d like to address a few of these specific claims in an attempt to encourage our yoga community to embrace a more science-based, productive dialog about the popular topic of fascia and the wonderful practices of massage and rolling.

 

MYTH #1: ROLLING ON BALLS AND OTHER MASSAGE TOOLS BREAKS DOWN FASCIAL ADHESIONS, KNOTS, AND SCAR TISSUE

Every massage therapist knows the experience of finding a tight spot in her client’s body, massaging it, and feeling it “release” or “relax” underneath her hands. It seems natural to assume that through her hands, she physically broke down a knot in her client’s fascia - and that through rolling on massage tools, we can do the same to ourselves too.

But one lesser-known fact about fascia is that its collagen fibers are literally as strong as steel. [Ref] To actually “break them up” would require so much force application that one’s body would sustain serious injury - this is not something that is achieved by a massage therapist’s hands or by a pair of massage balls.

Although you may feel a tight spot in your body change its texture after rolling or being massaged, this change was not due to the architecture of the fascia changing. For fascia to actually change its architecture, many, many inputs are required over a long time - collagen takes about three years in order to completely change and remodel. [Ref] Any instantaneous changes in tissue quality that you experience as the result of a massage are not the “breaking down” of adhesions, knots, or scar tissue - they are instead changes in tissue tone that are mediated by the nervous system. [Ref]

Once we understand that soft tissue treatments like massage and rolling work primarily via neurological communication instead of via physically breaking down adhesions, knots, and scar tissue, we might be encouraged to administer these treatments more gently than forcefully. When we roll and massage ourselves with deep, forceful pressure, this can often increase nervous system threat levels and sensitivity, which can be counterproductive to our efforts. Gentler, milder work is often more successful at decreasing threat levels and coaxing the nervous system to relax our tissues.

Massage and rolling on balls are undeniably wonderful, potent tools that help so many of us feel better in our bodies, but when we understand more about the mechanism for why they work, we will naturally be able to use them more wisely.

 

MYTH #2: WE FEEL PAIN IN OUR BODY BECAUSE OUR FASCIA IS FULL OF KNOTS, ADHESIONS, AND SCAR TISSUE

This is a very common belief, but it turns out that it is based on some inaccurate information about how pain works. I’ve written about the science of pain before [here and here], but one of the most foundational aspects of pain is that it is an output from the central nervous system, not an input from the periphery. It’s easy to be confused about this concept because when we feel pain, we feel it in a particular area of our body. It feels like the pain is in our tissues, and it’s our tissues that are therefore causing it. But the pain doesn’t actually reside in our tissues at all - it is 100% an experience that our nervous system has created for us to perceive - most likely to serve as some sort of protective signal.

Because pain is an output and not an input, adhesions, knots, and scar tissues - which are located in the periphery of our body (if they exist at all - but that’s a whole other topic!) - are not actually capable of creating pain. This concept might be tough to grasp, especially because we know that a massage therapist can touch a certain “knotty-feeling” spot on our body and it might feel tender or painful. But the pain you feel there was not created by the knot - it was created by your brain and experienced in that spot. Additionally, we know that we can have other painful-to-the-touch places in our body that do not actually correspond with a “knot” or tight spot that resides there. The flesh in those painful spots instead feels smooth and knot-free. And there are probably quite a few other locations in your body that definitely feel “knotty”-like when palpated, but are not associated with pain at all. [Ref]

As it turns out, pain and tissue quality are separate entities that sometimes overlap, but oftentimes do not. While it's easy to believe that all tight spots underneath our skin are problematic, the truth is that many of them are probably just normal, healthy variations in our tissue texture. And pain, regardless of where it is felt in the body, has less to do with knots, adhesions, and scar tissue, and more to do with a nervous system that has been sensitized around a particular area. This is a helpful, progressive change in perspective because the less that we pathologize the physical feel of "tightness" and "knottiness" in our tissues, the less likely we are to create nocebos for ourselves or our yoga students and massage clients. (A nocebo is a negative expectation of an otherwise harmless event or action that causes negative consequences like pain.)

 

MYTH #3: OUR FASCIA CAN BECOME DEHYDRATED AND ROLLING ON MASSAGE TOOLS HELPS TO RE-HYDRATE IT

This is an absolutely appealing and intuitive idea, but to the best of my knowledge, we don’t have research that supports this claim. Part of the problem lies in a lack of specificity for how this proposed dehydration/rehydration process would work.

An artist's depiction of connective tissue.

An artist's depiction of connective tissue.

In simple terms, our connective tissue is made up of cells, collagen fibers, and a non-living gelatinous matrix called ground substance. When the claim is made that fascia can be dehydrated, I believe the notion is that its ground substance is dehydrated.

It’s unclear to me how it could be determined that someone’s ground substance is dehydrated, however - can you tell by looking at someone from the outside? Maybe by looking at their skin? Can you tell because they feel pain somewhere? (As we mentioned earlier, pain and tissue quality are poorly correlated.)

Even if there was a reliable way to assess fascial dehydration, it is unclear to me how a massage or rolling on balls or other tools would hydrate it. The ground substance of connective tissue definitely has some water content, but how would the pressure from rolling change this water content? (Water that you drink goes through different channels in your body than water in your ground substance, so that's a different type of hydration than fascial hydration.) Does rolling add new water to fascia (how?), or does it move already-existing water from another part of the body to the deydrated one? If rolling did increase water content, wouldn’t everyone’s glutes be extra hydrated and especially healthy because so many of us squash them with pressure by sitting on them for hours every day?

Most of us believe this hydration claim because we heard it from someone knowledgeable like a smart yoga instructor or an experienced bodywork teacher. But if we actually look to connective tissue biology for some factual basis to the claim, we find that there is little support there. It may be true that massage can hydrate our dehydrated fascia, but research has not yet demonstrated this in a clear way. I believe we would do more of a service to our yoga community by waiting to make claims like this until science begins to produce some solid evidence for them.

 

In summary, fascia is an incredibly fascinating tissue of the body for an abundance of reasons. But we will better serve ourselves and our students if we shed some of our language about fascia that implies that it is full of painful adhesions and scar tissue that need to be broken down and hydrated. Additionally, massage therapy and self-massage tools like balls and foam rollers are absolutely wonderful, helpful practices that offer great results for so many people. But when we recognize and teach an awareness of the often-overlooked role that the nervous system plays in many of these massage benefits, we will be able to utilize these tools even more powerfully for ourselves and our students and clients.

 

(If you're interested in exploring these ideas further, you might appreciate this video from Quinn Henoch, Doctor of Physical Therapy:)

4 Basic Pain Science Concepts For Yoga Teachers, Part 1

I recently created a series of social media posts designed to help yoga teachers become better-informed about the complex topic of pain science. Pain science is growing in its reach in the therapeutic, fitness, and movement world, and even though yoga teachers generally don't treat people for pain (unless you're also a physical therapist or other health care professional in addition to being a yoga teacher), pain science actually has many important implications for us beyond the subject of pain itself. As yoga teachers, if we take the time to learn about even a handful of some of pain science's most fundamental insights, we'll be rewarded with a more current and accurate paradigm for approaching and dialoguing about not only pain, but movement, yoga, and bodies in general.

Here is a re-cap of the series of four posts that I shared through my social media channels so that they can be read all in one place together, and I'll follow up with Part 2 of this blog post series with some additional, new thoughts on how and why all of this might matter specifically to us as yoga teachers. I hope you enjoy perusing this info - feel free to share with your networks if you feel that it would be beneficial!


PAIN SCIENCE FACT #1: Pain and tissue damage do not always correlate. In fact, when it comes to persistent pain (often defined as pain lasting more than 3 months), the link between pain and tissue damage is often significantly weaker. (And yes, if you experience a pain that "comes and goes" versus a constant, steady pain that is always there, that is still considered persistent pain if it's been going on for longer than 3 months.)

Reason this is important: just because someone experiences pain somewhere in their body, this does not necessarily mean that there is *actual injured tissue* inside of their body. It might mean that, but it also really might not. (Remember, this is more likely the case when we're talking about persistent pain - not so much with acute pain. Acute pain is the direct result of a recent injury - like stubbing your toe on the door jam or spraining your ankle due to an accidental fall. Acute pain usually lessens and then stops once the injury has healed. Persistent pain, on the other hand, is also often also called chronic pain and is pain that lasts for a longer amount of time.)


PAIN SCIENCE FACT #2: Pain is an output of the brain. This is an often-cited pain science insight - but what does it actually mean? Remember that pain science involves a major perspective shift in how we see the body, so we really have to wrap our minds around some new concepts here. Typically, when we experience pain, we tend to think of the pain as being located "in our tissues", and our brain then senses it there and THEN we feel it. In this view, pain is an INPUT to the brain because it first exists "out there" in the periphery of our body, and then we sense it centrally (in our brain).

As intuitive as this "input" idea seems, it's actually the opposite of how pain really works! In reality, there is no pain *anywhere* in our tissues that is inputted to our brain. Instead, pain is a creation OF the brain that is meant to signal us to take protective action against a perceived threat. If you feel pain in your shoulder, for example, it's because your brain is *outputting* a warning signal to you about that area for some reason. Pain is therefore not an input from your tissues to your brain - it's an output from your brain to your tissues! How mind-trippy is that?

Now your brain might be correct that this painful area is under threat (especially if you recently injured that spot - too many sloppy chaturangas, anyone? Heh heh...) But your brain might also be wrong in its conclusion that the area is under threat - especially if there is no recent tissue damage there. And pain without tissue damage (and vice versa - tissue damage without pain) happens ALL. THE. TIME. Refer back to Pain Science Fact #1 to review this concept, and then see if you can put Fact #1 and #2 together to start to build your new pain science-informed paradigm.


PAIN SCIENCE FACT #3: We've already covered (in a very simplified way) the fact that pain is an output FROM the brain, not an input TO the brain. Pain doesn't exist in one's tissues to be sensed by the brain - it is instead a creation OF the brain to be sensed in one's tissues. But why and when does the brain choose to create pain?

We used to believe that all pain experienced in the body was the result of tissue damage somewhere inside of us - in other words, we thought pain was always the result of some structural problem. But we now understand that tissue damage is just *one input* that the brain considers when deciding whether to emit a pain signal. In addition to tissue damage, the brain considers inputs like past memories, emotions, expectations, beliefs, one's environment, things that health professionals say, and more when deciding whether to output a pain experience in any given moment. All of this information processing happens unconsciously, and in just a fraction of a second.

Now that you know this, think about someone who experiences a persistent pain in their low back (like 80% of us will at some point in our lifetimes). Here is a list of common reasons given when someone has back pain: your spine is out of alignment, you have a herniated disc in your spine, you have poor posture, you flex your lumbar spine too much, your SI joint is dysfunctional, you sit in a chair too much, you have SI joint instability, your core is weak, you have a vertebral subluxation, you lack core stability, your back muscles are tight, etc., etc.

This is a really long list of commonly-cited reasons for back pain, but the interesting thing is that they are ALL structural reasons - meaning that they all have to do with the physical structure of the body. But remember our new Fact #3 from today: the brain takes MANY inputs into consideration before deciding to output pain, and structural inputs are just ONE category of inputs. Combine Fact #3 with Fact #1 (the link between persistent pain and tissue damage is often quite weak), and your paradigm for how you think about someone's back pain might begin to shift and expand.


PAIN SCIENCE FACT #4: We often believe that our body is naturally vulnerable in certain movements or postures, like lumbar flexion, forward head posture ("text neck"), etc. We believe that these positions will injure our tissues and create pain, often blaming someone's low back or neck pain on these "bad postures".

What this viewpoint (that I used to share too!) overlooks is the fact that the tissues of our body are adaptable and become stronger when they are loaded (as long as the load isn't too high). Any movement that you desire to do is a "good" movement as long as your tissues are adapted to withstand its loads. (This is a super oversimplified explanation, but for more info, check out my blog post Are Some Movements Inherently Bad? (which was also re-printed in Yoga International).

Additionally, recall Fact #3 of this series - *many* inputs contribute to pain, not just structural ones. Recent research has strongly suggested that our *beliefs* about pain can directly influence our pain. For example, if we believe that a certain movement is bad for us, this can create what's called a nocebo - the creation or increase of pain or dysfunction based solely on negative expectations and beliefs.

BIG TAKEAWAY: The issue isn't that we need to *avoid* certain "bad" postures and catastrophize them - it's more that we want to move our body in a *wide variety of ways* so that we can be strong and adapted to many different positions. Movement variability is more important than fear of movement!


That concludes the series of posts that I shared through social media, but keep your eyes out for Part 2 of this series, which will attempt to address why all of this matters specifically to us yoga teachers. In the meantime, I also wrote a helpful introduction to pain science in Yoga International earlier this year (see "Yoga & The New Science of Pain"), and at the bottom of that article I included a lengthy list of links for further reading for those interested. Enjoy exploring this topic further if you feel so compelled!

Three Alternatives to Pigeon Pose & A Brief Discussion About Stretching

I know I might be in the minority amongst yoga teachers, but even though yoga students tend to looove their pigeon pose, I have consciously chosen to forgo this pose in my classes for the past several years now. While I do teach variations of pigeon pose like reclined pigeon and standing pigeon chair, I don't generally teach the traditional version of this pose in which you lie in a passive, unsupported forward fold over the front leg.

 

WHY I SKIP PIGEON POSE - REASON #1

I have two main reasons for skipping pigeon pose in my classes. The first is that it doesn't offer much in the way of positive change for the tissues of the body. We generally tend to think of pigeon pose as a stretch designed to increase the flexibility of the hips. But we've actually learned quite a bit more from scientific research in recent years about how stretching works (although there is still a ton that we don't know!), and thanks to my brilliant mentor Jules Mitchell, much of this new information is making its way to the yoga community.

One of the biggest realizations that I've learned about stretching is that flexibility is a much more complex topic than we've generally learned from our yoga teacher trainings, workshops, books, and other studies. The prevailing approach to flexibility in most yoga classes (and in much of the health/fitness world in general) is that if someone lacks range of motion in a joint, the solution is to stretch the muscles and fascia that cross the joint to lengthen them out. Then we get longer tissues and voila! - we can stretch further in that direction. By this reasoning, the solution to the ubiquitous "tight hips" that many people claim to have is to simply stretch one's hips out in pigeon pose for a long time at the end of every yoga class - a practice that we yogis are quite familiar with!

But the assumption that in order to solve all inflexibility issues, tissues simply need to be stretched out does not take into account the many other likely factors that could be causing the inflexibility - factors that passive stretching does not actually address. It reminds me of pain science and how easy it is to attribute pain simply to structural factors like tissue damage, poor alignment, or dysfunctional movement patterns, when the bigger picture of pain is truly so much more complex than this. The brain's decision to output a pain experience is multifactorial and completely unique to each individual - and in the case of persistent pain, is actually rarely due to a single structural reason like tissue damage.

Similarly, if someone experiences what they would call "tight" hips ("tight" of course being a vague, subjective word with no single definition for all bodies), the possible reasons for this tightness are many and varied, from a restriction in the capsule of the joint itself (which would not be addressed by passive stretching) to issues in how the brain is coordinating muscle activity (more of a motor control/neuromotor issue that is also not solved by passive stretching). Therefore, when we as a yoga community assume that the solution to all inflexibility issues is to stretch our tissues out in poses like pigeon pose, we are missing a much larger picture of how flexibility, performance, and joint function works.

This image of pigeon pose that I found online makes me feel weird. :)

This image of pigeon pose that I found online makes me feel weird. :)

WHY I SKIP PIGEON POSE - REASON #2

With all of that said, this isn't the only reason that I choose to skip pigeon pose in my classes. Even though passive stretching is not the universal solution to inflexibility issues that we yogis tend to believe it is, it still has some nice benefits, and I certainly include some passive poses in my classes. But pigeon pose also happens to incorporate some precarious joint positioning for the front knee and hip with the added weight of the torso and upper body lying on top of them, which isn't necessarily beneficial for these joints. Although there are ways to modify the pose to support these joints in a healthy way, these options are rarely offered or taught in detail in most yoga classes. And even if they were, most yoga studios don't have enough props to support every student the way they would need to be set up for optimal loading of the front knee and hip.
 

THREE ALTERNATIVES TO PIGEON POSE

And so, without further ado, I present to you... three alternatives to pigeon pose! These are three excellent ways that a pose like pigeon pose can be practiced, but with the added benefit of positive change for the tissues of the hip and a more efficient path toward increased flexibility. You'll notice that all three examples incorporate some degree of muscle activation (versus assuming the poses passively). This is because research has suggested that strengthening muscles through their full range will result in more flexibility gains faster than passive stretching alone. This is likely because when we actively contract our muscles during a stretch, this signals our nervous system that this range of motion is safe, and our nervous system will therefore be more likely to allow more range of motion in the future. Additionally, when we contract our muscles during a stretch, we load our connective tissues via muscular force, which increases their load-bearing capacity (i.e. their strength) over time. Strong connective tissues equals strong, efficient movement, functional joints, and decreased risk of injuries in the future.

Consider offering these options as an alternative to traditional pigeon pose in your yoga classes, or if you find yourself in a yoga class in which pigeon pose is taught, consider trying one of these "pigeon-ish" poses instead. (Just for the record, I don't think pigeon is an absolutely terrible pose, and I would certainly not "judge" a yoga teacher for including it in their class - pigeon is extremely ubiquitous in our yoga community and it sometimes feels like our students almost expect it. But once you learn a bit more about current stretching science and the connection between strength and flexibility, you might be inspired to change up what you offer to reflect these new understandings.)

If you decide to experiment with these pigeon alternatives, notice how it feels to strengthen your hips instead of passively stretch them in this classic pose, and enjoy the benefits that these new movements offer to your body and mind! (Also be sure to check out the further reading resources listed below these videos...)

 
 
 

Further Reading & Exploration

Blog Post: Resistance Stretching with Charlie Reid & Jules Mitchell

Related Online Workshop by Jenni: Re-Imagining Hip Openers: A Yoga Anatomy Workshop

Related Online Class by Jenni: Hips-Focused Practice #2

Related Blog Post by Jenni: Stretching Is In Your Brain: A New Paradigm of Flexibility & Yoga

Can A Simple Sitting Test Predict Your Mortality? I Have My Doubts!

You may have heard about the Sitting-Rising Test for Mortality. This test is said to predict your mortality based on how well you perform the task of sitting down onto the floor and rising back up to standing. I’ve seen news articles and video segments about this test passed around an abundance of times on social media with headlines like “Simple Sitting Test Predicts How Long You’ll Live” and “The Exercise That Predicts Your DEATH”. (Scary!)

Now I am definitely a proponent of the importance of skill in functional movements like sitting and rising from the floor, and I teach yoga and movement with this as a guiding principle. But I was curious about the bold claims and dire warnings I was seeing associated with this sitting-rising test, and I also didn’t love the idea of someone scoring a point or two below perfect on the test and then worrying that certain death was nearly upon them. I decided to examine the original research study on the sitting-rising test to find out what the researchers actually did and what their results truly suggested. I discovered that the research does show that this test can be a helpful assessment tool for a small percentage of the population (namely elderly people), but that the study’s results have been largely misinterpreted by news articles and the health and fitness world in general.

 

WHAT IS THE SITTING-RISING TEST?

For those not familiar with the sitting-rising test, it’s very simple to perform. From standing, lower yourself into a seat on the floor and then rise back up again to standing, using the minimum amount of support that you can (i.e. try not to use your hands or knees to help you.) You’re awarded 5 points if you can sit down without support and 5 more points if you can stand without support for a total possible score of 10. For each hand, knee, or other form of support that you use on the way down and up, 1 point is deducted from your score.

According to the study, lower sitting-rising scores were associated with higher mortality among its subjects. This seems quite suggestive on the surface, but let’s examine a few details about the study that are often overlooked in news and media reports.

 

1) The title of the study, “Ability to sit and rise from the floor as a predictor of all-cause mortality”, is very easy to misinterpret. To most of us, the term “all-cause mortality” is foreboding and seems to suggest that if you score lower on the test, you have an increased risk of dying from all possible causes - i.e. cancer, heart disease, stroke, diabetes, etc. How worrisome indeed! But what this term truly means is that the researchers did not control for type of mortality in their study because they did not know how their subjects died. This is actually the exact opposite of the way that most readers would interpret the meaning of the title.

Because the study did not control for type of mortality, and because the sitting-rising test assesses musculoskeletal health qualities like balance and strength, the most likely explanation for the deaths reported was that they were from falls. Therefore a lower score on the sitting-rising test probably does not suggest that you might die sooner from cancer, heart disease, diabetes, or a host of other frightening possibilities. A lower score instead probably simply suggests that you lack balance and strength skills, which indicates that you’re more likely to take a fall. We know that falls are an unfortunately common cause of death among older populations, which leads us right into the next point:
 

2) The majority of people who received low scores on the sitting-rising test were between the ages of 76-80. And the study itself also only looked at people between the ages of 51-80. This means that the sitting-rising test was most meaningful for elderly people (and again, this could be explained in large part because of the high incidence of falling as a cause of death among the elderly.) This also means that despite news reports that this “simple test predicts how long you’ll live”, if you are younger than 51 years of age, the results of this study do not actually apply to you.
 

3) The study showed no difference in mortality between those who scored an 8, 9, and a 10 on the test. This means that if you use one hand for support on the way down to your seat and one hand on the way back up (a score of 8), your mortality risk is no different from someone who uses no support at all and scores a perfect 10. This seems counterintuitive and is not the way the sitting-rising test is generally presented to us in the health and fitness world. We are usually told that using one or two hands and knees is significantly worse than using no hands or knees at all. But this is a misinterpretation of what the study found.
 

4) The magnitude of the effect becomes most worrisome at scores lower than 6 (using 5 or more hands and knees), and is largest with a score of 3 or less (7 or more hands and knees). And because the majority of people who received these low scores were elderly, the effect is really much more relevant for this age demographic (and is likely explained by falls.) This isn’t to say that this test is meaningless for people in their early 50’s. But in all likelihood, if a 51-year old has to use 7 or more hands and knees to lower to the floor and rise back up (just picture for a moment what that would like), this is probably indicative of obesity or some other fairly obvious health factor that is impeding their function and affecting their mortality that this study did not control for. (While the researchers did control for body mass index, this is not the same as controlling for obesity.)

 

In conclusion, I definitely believe there is value in learning to sit and stand with as little support as possible, and I do teach this skill in my yoga and movement classes. But unless better research comes out in the future, I would hesitate to suggest based on this study that people should assess their own mortality by using the “sitting-rising test”. I believe that doing so could cultivate unnecessary fear, stress, and discouragement in people who don’t score a perfect 10, and it could also encourage a false sense of security in people who do. This test appears to be statistically significant for elderly people only, and even then, the mortality likelihood predicted could be driven entirely by falls. The “sitting-rising” test is probably best utilized by medical doctors as a general screening tool for their patients in combination with other routine health assessments like measuring blood pressure and taking pulses.